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TOMARL A GEXERAL THEORY GF C> PROCESSES:

PART 2

DR. X.R. Goodman

Code 421

Camand and Control Department
NAVAL CCEAN SYSTEMS CENTER
San Diego, California 92152-5000

ABSTRACT

In a previous paper, the aughor has proposed a

model of general tactical C processes. In that
approach, an initial _attempt was made at_axiomatiz-
ing the essence of C3. First, relevant C3 variables
were identified, such as node state variables, in-
cluding positions, equations of motion, damage
level, supply level, and states of knowledge concern-
ing other nodes, both friendly and adversary. Other
types of C3 variables were also identified, such as
detections, hypotheses formations, incoming inform-
ation in the form of signals and weapons, and dats
fusion. Then, primitive relations involving these
variables were postulated. This, in turn, leadsto a
basic theorem showing the recursive dynamic evolu-
tion of a typical node state complex. Because the
theory established here is a formal one, both sto-
chastic and other logical interpretations - such as
fuzzy logic - can be formulated compatible with the
above-mentioned theorem. A1l of this was shown to
lead to inputs into an overall C° decision game be-
tween the friendly and adversary forces, where eact
player's move corresponds to a choice of desggn in
terms of the primitive relations among the C” vari-
ables. In addition, implementation issues concern-
ing computations involved with the above theory
were considered. A new technique was exhibited which
combined "exact linearizations" with gaussian sum
representations of distributions resultinyg in general
in substantial reductions of computations.

In conjunction with the above model, scme basic
questions have remained unanswered: How can submodel
choices fqr the key data fusion aspect affect the
overall C° model ? Should probability or fuzzy sets
be used in implementing data fusion ? Can one com-
pare and contrast these choices quantitatively ?

In response to these issues, the current paper con-
siders treating comparisons and contrasts of choice
of uncertainty measures from a game theoretic view-
point, extending previous work of Definetti and
Lindley. An outline of a procedure is also presented
here for directly incorporating the comparison of
choices into the overall €3 model and determining
the effect upon performance and effectiveness.

1. INTPODOCTION

The aughor proposed a comprehensive theory of tact-
ical €2 systems based upon a microscopic bottoms-up

viewpoint [1]. This approach is in contradistinction

to the more standard giobal/macroscopic approaches
taken by many researchers. (See [1] and [2] for
brief surveys of the field; see [3] for a more ex-
tensive overview of work during the past ten years.)

Efforts are underway in relating the author's work
with that of others' independent approaches, includ-
ing the work of Rubin and Mayk [5],86], Levis et al.
[73,[8], Gardner [4], and Ingber [9],[10]. Future
research will concentrate on developing fully con-
nections with these researchers.

In summary, previously in [1] C3 processes were con-
sidered as interacting networks of node complexes
of decision-makers and analyzed basicaliy as follows:

1. C3 primary variables can be identified and
classified into a basic taxonomy:

GLOBAL
Complexity, distribitivity, hierarchy
World views, politics

INTRANODAL { Within Nedes)
Node state proper N
Number of troops
Threat levels
Equations of motion
Supply/attrition levels
Damage levels
Importance measures
Knowledge aspect K
Algorithms available
Estimation of other intranodal variakles,
friendly and/or adversary
Node structure T
Detection Det
Hypotheses formulations Hyp
Consultations Con
Algorithm selection Alg
Data Fusion DF
Decision proc2sses Dec

INTERNODAL (Between nodes)
Node output responses R
Medium/environment parameters Q
Hode reception/input"signals” S

2. C3 system prinitive sufficiency relations can
be determined, leading to a full formal theory of

node state evolution:
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where fl ic the set nf all N's and thefr previous
states and where superscript ++, +, (blank), -
fndicate relattve node processing times,

3. Under the assumptfon of 2 and general (CE) con-~
ditfonal event algebra extending both ordinary prob-
ability logic and fuzzy logic {1n Zadeh's sense),
among others {11], N°7 can be obtained recursively
as an explicit functfonal of the prim{tive suffici-
ency relations in 2 and logical conjunction and dis-
Junction operators in an integrated-out chaining of
conditional forms, Symbolically,

N s GUAKINGCE: » L v ) 5 all b, (1.2)
for computable functional 4. (See [1], Theorem 4.1.)

4, Under the further assumptions of a full alge-
braic logic description pair ALDP, f.e., compatible
semantic €valuation {or models) | | is added to Cf,
the node states' general distributions (or possi-
bility functions, etc.) can be obtained:

Pacopth ) 7 GApappl )iy o)l L ),

(1.3)
for all N with functional § computable,

5. The overall C3 system's averaged vaiue or
measure of central tendency s determined as

. 3 s
IR AV(pALDP(N pwecd, (e

6. C3 functions of primary variables and their
distributional and logical characteristics can be
accertained:

MOE  Measures of effectiveness/system
- performance or specification

Synchronicity / asynchronicity,
Timeliness/duration of battle,
Political gain/loss,

Monetary gain/loss,

Overall attrition/supply levels,
Overall damage and/or morale,

- KA
Moe(c3y M(DALDp(C“)) ' (1.5)
f5r some functional A computable via transform
techniques,
¢
;. Health of overall €7 system (friendly or
auversary, separately) s

T

P 3
HUTH(G®) » J(MOE(C™)) (1.5}

for some computable functionel 4.

8. Loss of overall €7 game (Crr’cﬂj)
3

z(HLTH(cFr)

3 K}
,HLTH(CAd))ﬂLOSS(C“) , (1.73
where £ 15 a loss func§1on. Fr 1c the index reproe~
senting the friendly C systgm, Ad 1s the index
representing the adyersary C” system, and §¢ {5
assgmcd that each C* system can be fdentified a5 the
tuple

€%+ (bppptAX), py pp(M) & ALEP, 14 0 v]) L {1.6)
and where equivalently one can write

L035(e3) =« e, ¢ (1.9)
where
N eLojfopt (1.10)

9. Fult ¢ peston Game (¢3_, ¢35 055 15

thus determined through steps 1-8.

10. Obtain for C3 Design Gama, bayes decision
functions, minimax, lcast favorable distributions,
and,more generally, sensftivity of loss to changes
in the designs, 1.e., chofces for functional
descriptions for AX and ALDP, etc,, for each side.
(Again, sece [1] for further details.)

In order to implement the above steps, each inter-
mediate computation must be reassessed and possibly
expanded and evaluated appropriately, Pruning of
tge more remote possibilities of combinations of

CY variable values can be of great benefit here.
Recently, P.Girard [12] has shown that a feasible
and faithful implementation scheme for at least
steps 1-4 relative to ALDP chofce CPL (conditional
probabi1ity logic) can be obtained for a simpiificd
versfon of the outer/inner air battle zcenario,

In [13] Goodman established a beginning of a gencral
theory for datua fusion and pointed out relations

to €7 systems as a whole, In [14], a particular im-
plementation of data fusion was {nitiated via the
concept of "measure-free" conditional evcntss-
alluded to in the above development of the C¥ Pesign
Game - with emphasis on developing a full condition-
a1 probability Jogic. In [16], this {dea waos extend-
ed and modffied for the possible choice of Zadeh's
fuzzy sets and logic, as well as for related logics.

A basfc issue for all of the above {s the actual
chotee of ALDF: probability? fuzey eets? Dempeter-
Shafor meaoures? QObviously, 1f a1l pertirant in-
formation {5 sensor-oriented and/or stochastic in
nature with reasonably well-defined distributions
available, then PL (probability Yogic) should bhe
considered, On the other hand, 1f natural’ janguage
descriptions are present in some quantity, then
possibly Zadeh's fuzzy set scheme {3 more apropus.
Other situations can 2rise, where the Dempster-
Shafer measyres appear attractive, Thus,wha* to do?



2. EXTENSION OF DEFINETTI-LINCIEY
GAME: BASIC OONCEPTS

In response to the last-mentioned issue in the last
section where one wishes to choose the most apropos
ALDP for a given situation, DeFinetti [16] indeed
showed the following: The class of all finitely
additive probability measures coincides with the
admissible class of nonrandomized decisions for a
particular decision game. In that game, the aggre-
gated loss is a cumulative sum of scores in the
form of squared differences between any choice of
uncertainty function (not necessarily probability)
and the indicators of possible combinations of
corditional events. Later, Lindiey [17] extended
Definetti's game by replacing the score function

by a much more genmeral form than squared difference,
but he did retain the aggregation function as .rith-
metic sum, Lindley showed, depending on the score
function f chosen,a unique corresponding nondecreas-
ing function P, over unit in*tsrval [0,1] back to
itself exists, f e, P.:f0,1]+ [0,1] , cuch

that Pf(0)=0, Pf(1)=l, and most importantly, if

u is any admissible uncertainty measure (admissi-
bility here must be clarified), then P oy is a
finitely additive conditional probabiligy measure.
Conversely, if p. is such that it is strictly
increasing over ."[0,}]then Pcon 3 finitely addi-

tive conditional probability measure implies that
u is admissible.

However, Lindley also claimed that a number of well-
kmown uncertainty measures did not satisfy the
above basic criteria for being admissible jor any
choice of score fuwction f and hence were noi ad-
megsible in a strong sense. These included signif-
icance tests, Zadeh's max-possibility measure,

and Dempster-Shafer belief measures among others.
(See [17], pp- 9 et passim.) Despite a lively
discussion at the end of Lindley's articie by sev-
eral of the leading researchers in the field, the
chief issues involved in the work remained surpris-
ingly untouched:

1. Were Lindley's conclusions concerning the
general inadmissibility of the named list of un-
certainty measures actually correct?

2. What roie does Definetti's concept of
conditional event indicator functions and their
assumed relations play - used tacitly by Lindley
and not part of the standard literature (semantic-
oriented) for conditional probability ?

3. Can Lindley's almost informal presentation
be made more rigorous and put into a pure game
theory context for further analysis?

4. What happens when the sum Lindley used for
aggrgation is replaced by a more general function?
Lindley did address this question in par%, but no
actual answer was provided.

This led to [18], where it was shown that:

In response to 1: Lindley's conclusion were
not entirely true. To begin with, a monotone trans-
form on probability is not the same as probability-
unlike other mathematical concepts, probability as
a measure is very sensitive to any e<tosrnal trans-

59

form, being no longer a probability, while for any
internal~i.e., within the argument-~transform,
probability is changed- but to another induced
probability! Thus, it is not difficuit to show
([18], Theorem 4.2.2) that probability itself is
inadmissible for non-square score functions.
Moreover, although Lindley correctly concluded

that max-possibility measure was not generally
admissible for anv choice of score function f

{still for aggregation as 2 sum), many related poss-
ibility functions are generally admissible and

in fact max=possibility can be shown to be a uniform
limit, under mild conditions, of generally admissi-
ble possibility measures. Furthermore, Lindley's
conclusion that all Dempster-Shafer belief measures
are not admmisible for any choice of score function
is also in error, since the important class of fixed
powers of probability measures when the power ex-
ceads or equals unity js generally admissibile.

In response to 2: DeFipetti, as well as
Lindley, both assumed firstly the validity of the
use of conditional event indicator functioas as

« ("undetermined"), if w ¢ B’
{A[B)(w) ={1 , ifwec AB (i.e., AnB)
0 ,ifweAB (i.e., B4A)
(2.1)

for any sc®e A,B ¢ Q, some fixed universal set, w
€ Q, and where (A}B),in Von Neumann's spirit, is
thought of both as the conditional set or event
“A given B" (antecedent B, consequent A) and as its
indicator function as given in (2.1). This relation
is obviously reasonable. In addition, both Definetti
and Lindley assumad the validity of the basic chain
intersection relation among conditional events:
(AB|C) = (A|BC)-(B|C); all A,B,C ¢ 2. (2.2)
This of course corresponds to the well-known con-
ditional probability relation

p(ABIC) = p(A|BC)-p(B]C); a1l A,8,C ¢ A, {2.3)

for which p(BC) > 0 , 4 ¢ P(Q) boolean algebra of
sets, and o4 + [0,1] a finitely additive condition-
al probability measure.

Although DeFinetti briefly mentioned developing a
calculus of operations among conditional events,
in both volume 1 and 2 of [16] (see [16], voi.1,
Chpt. 4 and vol. 2, pp. 266 et passim to 333),

he did not take iny of these ideas further, nor
did Lindley [17]. However, these questions are
fully addressed in [19]-[21], where not only is
(2.2) derived - as well as (2.1) - from 2 minimal
number of natural assumptions, but also a full
calculus of operations and relations is developed
in a non ad hoc manner exterding the usuai ones
for the unconditional events describing 2 typical
boolaan algebra. In addition, a number of intersst-
ing mathematical properties are shown for the
ensuing conditional event algebra, includingire-
lations with Koopmann qualicative conditional prob-
ability structuress a sound and complete vgrsion
of propositional CPL (conditional probabilxtg
logic)sand a full algebraic abstraction showing
such conditional extensions of boolean algebras
are themselves - though not boolean by failure of
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the Law of Excluded Middle (or Complements) -

are indeed bounded distributive lattices whi~h are
relatively pseudocomplemented, possess an involution
operator, are DeMorgan and absorbing, as well as
possessing a number of other properties, and can

be shown to extend the Stone Representation Theorem
[21]. See also the previous related work of Schay
[22] and Calabrese [23].

In response to 3: It is shown in some detail in
[18] that bayes decision functions, least favorable
prior distributions, game values, and other game
theoretic properties can be derived for the DFL
uncertainty game. Most importantly, one can pof
only determine the analytic conditions for admissi-
bility of competing uncertainty measures- as will
be outlined later here - but also use directly the
overall uncertainty game loss function to rank or
evaluate such measures numerically for various
given situations. The latter is most compatible
with the spirit of developinga comprehensive theory
of C° systems integrating data fusion.(See sect.§.)

In response to 4: It is shown in [18] that
non-sum aggrgation functions can be used in de-
termining the overall uncertainty game loss which
do not yield probability measures or functions of
them as the admissible class. (In particular, see
[18], section 7.) This topic will not be considered
any further here, except to show some definitions.

In the next section, the rigorous analysis for the
OFL uncertainty game is begun.

3. PASIC ESTABLISIMENT OF TEE [FL
TEKIAIITY. GRS

Let,throughout,Q be a fixed nonempty set and

A € P(Q) a fixed boolean algebra of subsets of

! with the usual set notation u, « (for a), ( ),
®, etc. Also, let for each positive integer n, AP
denote the class of all n-sequences or n-tuples of
A with typical element denoted as A<(A ,..,A ),
AjsA . In turn, let 1 n

d
A‘!’:AUAZUAE’U' (3.1)
be the class of all finite sequences of sets in A.
Further, relative to conditioral sets, define:

29 a1 S tAB): AB e AT, (3.2)
the class of all conditional events of A, and
1@3 (AlA), L SN O v - {3.3)

the class of all finite sequences of conditional
sets eriending A with typical element denoted as
a= ((Ailal)""(Anlgn)) . Also, for each € ¢ A,
denote the class of all conditicnal events with
antecedent B as

apdune): Ae At ed (3.4

and define the class of 2all finite sequences of
events having tiie same antecedent as
-3

A4 uou e (3.5)
BeA n=1 :

At this point, consider again DeFinetti's concept
of conditional indicator function as given here in
(2.1) . It is obvious from the definition that

(A]f) = A and (A]B) = (AB|B);all A,B € A. (3.6)

One could also wake the following assumptions
which are natural homomorphisms relative to conse-
quences for a fixed common antecedent:

ASSUMPTION I:
Fcr a1l A,B,C € A,

(a]B)-(c|B) = (aci8) , (3.7)
(A]B)u(CiB) = (AuC|B), (3.9
(A[g)' = (A']B) . (3.9

One could also add or replace Assumption I by the
analogue of probability conditional chaining forms
mentioned earlier which DeFinetti and Lindley em-
ployed in their derivations:

ASSUMPTION IT:

For all A,B,C ¢ A,
(aB]c) = (A]sC)-(8jC). (3.10)

Assumptions I and/ or II will be stated explicitly
where made. Otherwise, only assume that DeFinetti's

cenditional indicator set function and its property
as in (3.6) holds.

Hlext, let throughout the analysis 2, < 3y < 3 <a,

be fixed reai numbers, and recalling the symbol «
as introduced in (2.1), let f:[az,a3JX{0,1,a} -1,

where R denotes the real euclidean 1ine of numbers,
be such that:

(i) Ffor each j € {0,1}, f(-,j) is continuously
differentiable with a unique global minimum in
[2,,a,] at a., so it is strictly increasing over
[aj,ag] and dtrictly decreasing over [az,a3].

(ii) f(-,0) = 0 over [az,aa].
If f satisfies 211 of the above, call f a score
finetion.
Hlext, denoting the set of all real finite sequences

as d 3
&=RURZUR u- (3.11)
suppose that ¥:§ - R is a function such that:
(a) ¥ is continuously differentiable in all of

its arguments.

(b) ¥ is strictly increasing in each of its ar-
guments seperately over any Ri.

(c) For any positive gnteger n, letting On be the
n by 1 zero vector in R,

¢(0n) =0 . (3.12)

In this case, call any such ¢ 2n aggresation
fwretion. The most important aggregation function-
and the one that will be used almost entirely here
is ¢ = +, ordinary arithmetic sum.




Next, define

-}

(_j ~
A“) = A xg (3.13)
and call it the space ¢f moves or pwrestrategies of
player 1 or Natwre. A(]) corresponds to 211 possible

values of unknown parameter w ¢ 2 in comi:ination
with all possible available experiments, i.e.,
finite sequences @ of unconditional,or more azier-
ally,conditional sets from X , with evaluation
using (2.1),

d
alw) £ ((4)18))(0),... (4,18 Me)) (3.14)
thus representing in reality which conditional

events (Ale.) tn the sequence occur, i.e., for
which w € AJ.-JBJ. , yielding (Ajlaj)(m)ﬂ ; which do

not occur, i.e., for whichwe Aj'-Bj » yielding
(AjIBj)(m) = @ ; and which are uncertain in their
occurrence, i.e., for which o ¢ 83 , yielding

B} w) = « .
(A;18,){w)
Next, define the caronical pariiciorn mapping
m:A_ - PP(A), where for any positive integer n and
any R = (A,-A ) € A,

T .
nA) = A Ked ) (3.15)
where for each subset K,
acd nhn oaf , (3.16)
S jex feJ
= ¢
"”TI {1,..,n} . (3.17)

~ ki
Define also the mapping t:A + A” , where for any
Aj’Bj €A,

d
7(A.]B.)=(AB_., A'B_,B. ). 3.18
( J, J) ¢ JJ JJ 3 ) ( )
Then, extend T to 1: A~ A_ , where now for any
a = ((A]IB])y--r(Anan)) € Aa ’

wa) ¢ (z(a 18 t(A 18)) , (3.19)

identified in the natural way as an element in A3".
Thys, using (3.19), one can extend NM_in {3.15) to
:A, ~ PP(A) where now, for anyac A_,

ila) ¢ Kicla)) .- (3.20)

Just as S(R) is a finite disjoint exhaustive par-
titioning of & which is the sm3llestpossible cuch
class from which all elements of A can be ob*ained
as disjoint unions of this class, so is fi{a) as 2
disjoint exhaustive partitioning of Q2 relative to a.
using (2.1).

Hence, one can conclude from above that a considered

as a function a:Q + 10,1,u)"can be naturally iden-
tified with the restriction

a:ifa) -~ {0,1,a) , (3.21)

where typically for any v ¢ N{a},

d .
aly) 2 efw), aliwey, (2.22)
is the same constant v2lue depending only on Y.
NHext, call

_-IA

d
A, & [ay0, (3.23)

the space of roves or pure strategies of player 2
¢r the Deciston-maker. Equivalently, Ap is the
space of all wuertainty measuves u:A + [az,a3].

In turn, define the overell loss juneticn
. £, T
Lf,&' A(]) XA, + R, vhere for anye e A, any

wef,andany p < Az R

Le gleom) € 57 uia) ale)) (3.22)
where d
wla) € (u(a, 180, u(A [8)) (3.25)
and d
f(u(a) ,a(w)) =

(FlaCh,15 ), AylB D)
€ {(n . (3.26)

But, in view of the identification in (3.21), one
can replace A(]) by A] and redefine L equival-

154
ently to (3.24) as L. ,: Ay x Ay - Q, where

¥
A 9 (efa)): ac &, with (3.21) holcing),

! .- (3.27)
Thus, for 2ny a € A, ¥ € (e}, u e A, , one can
replace (3.24) by the equivalent

Le q)(a.v;u) g 4(f(ula),aly))) - (3.28)
call d

6y - Ay A5 L) (3.29)

the Definetti-Lindley wrceriainty measure came
(pFL). Clearly, (A.,A ;L. ) is equivalent to G, .

1 2 f, - f:‘;'
Most importantly, it follows that for eacha e %m .
the subgame )

Qz,f,¢

oy
Y

g (e, ayt, (3.30)

where L, " is restricted appropriately, has player
1's spacé {a}xt being infinite, while for the
equivalent subgame (a.,ﬁ(a.),I\Z;Lf ﬁ) ., player 1's

space (ea,R{e)) is finite, resulting in an S-game.
Such gares allow for elegant theoretical results
yielding least favorable priors, bayes decision
functions all existing, closed and bounded con-
ditional loss (risk) set with a continuous ioss
function, completeness of 211 admissible decisions,
otc. ( See e.g. [24]; see also [18], section 4.1.)

future work will consider in more detail various
game theoretic properties of DFL.




4. ATMISSIHILITY CONCEPTS FOR IFL

Among all the many possible game thecretic proper-
ties one could consider for DFL, admissibility and
bayes decisions, i.e., bayes uiicertainty measures,
stand out in importance.

tet y € A, be any uncertainty measure and E c A

2
arbitrary. Then, define:

(i) u is E-adrnissible with respect to G_  iff

fav
v e AZ (restricted
to @ without loss of generality) such that

Cav)X L e o, w), (4)

for each e ¢ E , there is no v =

Lf&(ad;v) 3 Lf’w(a,v,u);aﬂ veli{a),(4.2)

with strict inequality holding at least for some y.
(ii) v is E-weak locally admissible urt Gf "
(E-WLAD) iff for any ﬁ((A]IB]),..,(AnIBn))’e E,

for each y € Rn, with §y] =1 and each 130, there is
a positive real number r=r(u,y,\) such that there

v ms t,0<t<a,such that assuming wlog LJ‘= (e,Y,-)
over [a0,31]n is non-constant, fur all y’e fi{e),
+ - .t - .
Lf’¢(awY,u (ty)y Lf’¢(aqr,a)s At (4.3)

where ]n is the n by 1 vector of all 1's.
(ii1) For any e € A" , the jacobian ratriz here
is

Jg ylel0diaL,  (a,v,x)/3%) (4.4)

vei{e)

an m by n matrix function of x ¢ a

n
d O’a]] , where

n card(fi(e)). Then, it is readily shown:

p is E-WLAD wrt Gf " iff for each @ ¢ E, there
3 = i
isnox=x e [ao,a]] such that

Jf"p(a)(x)'x< 0 - (4.5)
See {181, Theorem 3.2.1.)
(iv) v is E-bayes wrt mized exiension of Gf o
iff for each a ¢ E, there exists a prior probabil-
ity function a=q, {over N{e) such that
'inf( g L ,(Q’Y)U)' Q(Y) (‘%-5)
fen,)ver(Ale) fy )
occurs for v =y .
(v) Define the fcllowing classes:
g, ¢ (WAlBY}: (AlB) € R}, (¢.7)
d
E, = (((a]8),(A"[8)):A,8 ¢ A}, (¢.8)

5 g {((A]B),(C|8),(AuC|B)):A,B,C € A;AC=0}(4.9)

£, 3 (((AlBC), (B]C), (ABIC)):AB,C € A} . (4.10)
Thus, -
EpEpEy shys E e (4.11)
{vi) Oefine fer each t ¢ [0,1],
Pt} € £(£,0/(£ (60)-F(81)).  (4.12)

Thus, P_:[C,1] + [0,1] is continuous nondzcreasing
with P_(0) = 0 and Pf(I) =1.

Theorem 4.1. ([18]1, Corollary 3.2.1)
e, is El-dLAD wrt Gf’$ iff range(u)c [ao,a1]. .
Theorem 4.2. ([18], Theorem 3.2.2 )

Suppose Assumption I holds, then

(i) ne A, is E],:Z,E3-ALAD wrt Gf’+

ift

(ii) Pfou : AB + [0,1] is a finitely additive
probability measure, for each BeA.

Theorem 4.3. {L18], Theorem 3.2.3 )

Suppose both Assumptions I and II hold. Then:
(i) nea,is E],Ez,c3,c4-JLAD wrt cfﬁ

iff

(i1) Peon : Z+ [0,1] is a finitely additive

conditional probability measure,i.e., necessarily,
for any (AIBg ¢ A, provided u(8} > 0,

(2 ) (A[8)) = ) AIB)=(e YRPoE) «

where of course P_ep (8) = Pf(u(B)), etc. "

It should be remarked that the comdition (ii) of
Theoren 4.2 is in general weker than (ii) for
Theorem 4.3. Indeed, Acz&1 [251, pp. 321-324 has
shown in effect a similar result:that the function
in question has not only similar properties to

Peou » but is also,relative tedll conditional events,

a function of the consequent (conjoined with the
antecedent) and the antecedent.

Theorem 4.4. ([181, Theorem 4.2.1)

Suppose Assumption I holds and score function f is
such that P_ is strictly increasing over [0,1].
Then, the foflowing statements are equivalent for
~y given p ¢ Az wrt Gf Lt

(i) wu is Zo-admissible.

s34 § £ £ .
(ii) pis E 'y, WLAD.

Al -

(iii) p is A _-bayes.

(iv) Pfau:Aa - {0,1] is 2 finitely additive

———_sast




probability measure, for each B e A .

Theorem 4.5. ([18], Theorem 4.2.1')

Suppose both Assumptions I and II hold and score
function f is such that P_ is strictly increasing
over [0,1]. Then the fo]lgwing staterments are equi-
valent for any given u € Az:

(i) w is A -admissible.

(ii) p is E},EZ,E3,C4-ALAD.

(iii) u is A_-bayes.

(iv) Peow: A~ [0,1] is a finitely additive
conditional probability measure.

5. ADMISSIBILITY OF POSSIRILITY
AN BELTEP MEASURES

Consider ¢irst another concept related to admiss-
ibility , noting that the space of all uncertainty
reasures A, does not depend on any choice of score
function 2 _nor on any aggrecate function. How-
ever, since throughout this section only the case
B = + will be treated:

Let ¢ € AZ be arbitrary. Then, if there exists a
score function f such that y is Eo-admissible wrt
£+ such that Pf:LO,lj + [0,1] is strictly

increasing, call u gemerally acwissible. If, more
strongly, there is a score function with Pf strict-

qame G

1y increasing over [0,1] such that u is A -adniss-
ible, call y sirong cenerally acaissible. If, more
weakly, there is such an f as above .so that p is
A -admissible, call p weak generally adnissible-
Hote:all strictly increasing P, for appropriate score

functions § coincides with ciass B of all strict-
1y increasing h:{0,1] ~ [0,1] with h(0)=0, h{1)=1:

Theorem 5.1.
Let ye Az be arbitrary. Then:
(i)
(I} » is generally admissible
iff
(11) There exists h ¢ # such that hey is

a finitely additive probabiiity measure over each

AB’ Be A

(ii) (1) u is strong generally admissible
iff
(11) There exists h ¢ 8 such that hou is_a fin-
itely additive conditional probebility over A.
(iii)
(1) u is weak generally admissible

iff

(1I) There exists h € B such that hop is a
finitely additive probability measure over A.

Proofs: Use Theorems 4.4, 4.5 and the above comment
concerning strictly increasing P_'s and class 3.
) | |

Add on the phrase "cowntadbly cddiiively” to any of
the three types of general admissibility, when the
f yielding P or euivalently, the he ) is

such that P'gu is net only & finitely additive
probability'measure (or similarly, for hemu), but it
is countably additive.

Some additional definitions will be required in
order to show the general admissibility of a large
class of possibility measures:

€al11l a function T:[O,I]2 ~ (0,11 2 t-cororm if
T is associative, cormutative, non-decreasing such
that

T(s,0) =s ; T(s,1) =1 ; 2}l se[0,1]. (5.1)
(For background on this and related concepts dis-

cussed below, see e.g. [26].) Call a t-conorm
archiredean, if it is also continuous with

T(s,s) >s , for all O<s<l. (5.2)
Max is a t-conorm which is not archimedean, but

minsum. and probsum are archimedean t-conorms,
vhere

minsum(s,t) d min{sum(s,t),1}, (5.3)
probsua(s, t) S 1-(1-s)-(1-t)), (5.4)
sum(s,t) g s+t . (5.5)

A t-conorm can always be extended to T:[0,1] + [0,1]
where

d 3
0,11, 00,11 v 01 v 0,1 v-,  (5.6)
the set of all finite sequences in [0,1], by first
defining for all sef0,1], d
T(s) = id(s) = s , (5.7)
and for all S] ,SZ)—: Sn € [0’]]1
- d .- - .
T(S]’SZ» :sn) = T('(SI,SZ: ’Sn-l)’sn)' (:’-8)
using associativity and commutativity.
Ling's Theorem is also reievant here:

Theorea 5.2. (Ling[27])

(i) Let T be any archimedean t-conorm. Then, there
exists a function 9%9; called the gererator of T,
such that

(1} g:[0,1] = [0,%#] is strictly increasing,
continuous with g(3)=0 and g(1) s 4=,

(11) 1
T(r,s) =g (min{g(r)+g(s),q(1})), (5.9)
for all r,s € [0,1]

(ii) 1f q is any function satisfying {I) and T is
any function defined through g via eq.{(5.9), then

T is an archimedean t-conorm.
|

It follows immediately from Ling's Theorem 2bove
that if T is any t-conorm with cenerator g, then




for all S.I :52)_)5" € [0111) n=1 )2’3:— >

T(s].Sz,‘:Sn) = g"(min(g(s])Hg(sn),g(i))),

(5.10)
which, turn, can be extended tc an at most count-
ably infinite number of arguments, by a straight-
foraard continuity limit approach.

Next, ifpe [0,1}A , call y a decgrposabie mecsure
if there exists a function T:10,11° + [0,1] called
the composition law of u ~ not necessarily a t-cc-
norm - such that

u(AuB) = T(u(A),u(8)) ; A,B e A; AB = 9. (5.11)

Next, if ue [0,1] A and there exists a t-conorm T
such that u is decomposable wrt T, i.e., T is the
EPmposlflgqal law for u:’thep say that Iais a
f-posstbilicy measure. Thus,if pe [0,1] isa T-
possibility measure, it follows that for any at
rmost countable set A ¢ A, since trivially,

A = ulw} disjointly, (5.12)
weh
then
#(R) = T®(Lel) ). (5.13)

Conversely, if p:2 - [0,1] is arbitrary, i.e., a
fuzzy set membership function, and if T is any t-
conorm, then p can be extended to uT:?(n) + [0,1]7,

where for any A € (),
url8) € T((ete)) )

noting immediately that p. is a T-possibility
measure. lote that any prob. meas. y is a T-possi-
bility measure with T = minsun.

Hith all of the above definitions made, the fol-
lowing obtains:

Theorem 5.3. ([18], Theorem 5.2.1 and ensuing
rerarks)

Suppose that 9 is at most countably infiajte and
consider only A = P(), with p ¢ (0,1 Y. Thus
here 211 concepts of general admissibility coincide
with the weak one. Then:

(1)

(I) u is general adnissible

iff

(II) u is a T-possibility measure, where 7 is
2n archimedean t-conorm with generator g such that

g(1)=1 ; 7§ glu(w)) < 1. {5.15)
QR

(i1) (1)  is general admissible countably additive-
]y X3
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(If) p is 2@ T-possibility measure such that T

is an archiredean t-conorm with generator ¢ so that

g(1)=1 ; | glule)) = . (5.15)
welt

Proof: In the 2bove, note that onme has the relation
between the score function f making L A _-acmissibie
and generator q:

g=P . (5.

64

Theorem 5.4. ( [18], Theorem 5.2.2)

Suppose again 2 is at most countably infinite and
consider only A = P(Q), etc. as in Theorem 5.3 ,
but now suppose that yu:2 - [0,1] is any given fuzzy
set membership function. Then:

(i) Suppose p is normalized, i.e.,

u(mo) =1 ; some @€ Q. (5.18)

Then,

(I} There exists T-possibility measure extend-

ingu to vT:P(Q) + [0,1] such that . is general

admissible countably additively
iff
(1) .
u= 6u . (xronecker dit2)(5.19)
oi

{ii) Suppose

0<% 2supple) <1 .
wefd

(5.20)

Then,
(I) holds as in (i) but with (5.18) replaced by
(5.20)

(11) u-][t,ll is a2 finite set for any 0 < t 5]

Proof: The proof of (i) is sicple. The proof of (ii)
{T) implies (II) is also simple and not of any sig-
nificance, but the proof of (I1) implies (i) is
complicated . The latter is very significant in that
it provides a general constructive way for obtaining
a generator g,which in turn determines an appropri-
ate t-conora 7, ; where g satisfies (5.16), and
hence by the ygoof of Theorem 5.3, score function f
waking 1. A -adnissible is deternined a5 in (5.17).
)

Unfortunately, due to lack of space, the interested
reader is referred to [18], Theorem 5.2.2 for full

details of the long construction. 2

It should be remarked that the significance of
Theorem 5.4 is that it allows essentially-any
fuzzy set merbership function over a discrete
domain to be extended appropriately to an admissi-
ble uncertainty measure over the power class. Even
if the fuzzy set mecbership function is normalized
- as is often the case - by sieply establishing a
slight deficiency, i.e. a maximum less than unity
2s in (5.20), the adjusted function can then be
used as above to 1ead to an 2dmissible extension!
Finally, note that the condition in (ii)(1i) is
satisfied for 211 p:q ~ [0,1], when 2 is finite.
Theorem 5.5. ([18], Theorea 5.2.3)

Suppose the sate general hypothesis holds here as
in Theorem 5.4 (ii). Suppose also, that there exist
nonnegative real nuzbers tl.tz such that

- t
card(u: ‘[l/n , W(n-1)1) s tn 2, (5.21)
for all positive integers n 2 2.

Then, though it is easily seen that the t-conorm




P

extension in the form of Zadeh's max possibility
measure k. is not general admissible (see

Theorem 5.3, noting as before that max is not an
archicedezn t-cororm}, it ic the unifora limit in
al] A ¢ 2() such that A iS5 disjoint from the set
1 (xo). card(A} Scunded, of the gemeral admissi-

ble Tr-possibility measure extensions y_ of n,

as_r approaches o , where for all 5 e'[0,11,

~ 3eerily

T d . T ... F iir c 291
'r(SI""sn) nln(s] eeets D), (5.22)

This section is concluded with a brief result con-
cerning Dempster-Shafer belief measures. For core
extensive treatcent, see again [18]. for definitions
and backaround, including relations between rancdea
set supercoverages and Poincare expansion generali-
2ations, see [2%].

Apropos to Lindley's conclusien that essentially
all belief measures are not genmeraily acmissibie:

Theorem 5.6. ({181, Theorem 6.2)

-.opose that & is a finite space and once core
consider,only &4 = P{Q) with A, in effect restricted
to [6,1]". Alsc, consider the'class

d . - .
8= {ur: p:A ~ [0,1] is a finitely
acditive probability =easure,
r 21 arbitery real } (5.23)

Then, obviously by Theores 5.1 (iii) with h( ) =

)¥, 8 is a class of (wezk) generally acsissible
uncertainty ceasures. Sut, in addition, £ is 2
class of Drmpster-Shafer belief ceasures.

Proof: See [18], where the criterion for belief
Tunctions is verified for v = g
§ (-1)2rdA8) ey 20 2t A e AL (5.29)
BEA .

6. FURTIER IVRRRZINTION CF [FL GRE
AND USE WITH C SYSTEM YOOEL,

The thrust of sections 2-5 was to show that the DFL
gace - on at least a theoretical level - provides
criteria for determining the adaiscsibility or bayes-
ian status for any given uncert2inty ceasure: nazely
it sust be essentialiy 2 conotone increasing trans-
form of 2 probability ceasure. However, these
resuits, in themselves, are not enough to provide
practical guideiines for direct co=parisons of un-
certeinty measures. One cust be 2bie to compare
losses directly and nuzericaliy.

Assume throughout =ost of the following 2nalysis-
uniess otherwise indicated- that ¢ = +, 8 is z non-
vecuous finite space, and restrict éz so that eniy

uncondi tional events are consideres, i.e., :2 z
4
- N -
10,1}, & = 2(n}). For any n:(ﬁi...,nn) €& a2zl

canonical partitioning ﬁ(ﬁ)sf?]....y_i. say, with
i

Y5 all nonvacuous disjoint, and for any uncertainty

measure u:A + [0,1], note: In regard to (4.6), one
can write, for any krcum prior probability ceasure
q:A ~ [0,1] , the e=pected ioss wr: q as

d
pf’f(i’u;Q) = éﬁlof,{.(ﬁ)@':) dq(&)

o]
= iziLf’i’(ﬁ’Ti »’J)'Q(Yi)
a

"
HEw3I D o

3

1| &~

( f(u(Aj).i)'q(A-) + 7{1(4.),0)-(1-q(A.}) ).
i=1 J 3 J(S])

Hence, (6.1) shoss (see definition 4(iv) and eq.
(4.6)5 that the =inical expected loss ic

. inf (of’+(5,u;q)) = of’+(§.'r.uq;Q) , (6.2)

over 211
e Az

where 1 is {A}-bayes wrt mixed extension gece of
G, , 2ad is given by differentiating (6.1) wrt u(ajt
[

f‘(u(ﬁj).l)Q(Rj} + "(u(kj),ﬂ)(l-Q(ﬁj)) =6,

which is equivalent to

Pl (A)) = alas) , 3=1,.m,  (6.3)
i.e.,
Pfenq =q. (6.4)

Also, as q varies arbitrary, cozpatibie with iheor-
en 4.4,

{u :q:A~[0,1]is any finitely additive
prior probability zeasure}

= set of all A - aczissible uncert2inty me2sures.
- (6.5)

In particular, consider Cefinetti's original square
ioss function f = fb , where

3 g -f{s_3 2_ 'y 3 i= -
io(t,J) = Co (5’.‘) M ‘2[0']1'3'1 52 .

{6.5
< a fixed positive constant, which throuch further
study is negligable. Then, not oniy are ali of the
above results v2iid¢ for this ca2se, but reduce to:

pf(t) : Zcot/{ZCOt-Zco(:-i}} =t ; tef0,il.i.e.

P, = identity function;
so that for 2ny grior q:A ~ {6,1],
¥ 7 9
with =inizal expected loss
T 2
3 (01-ata ) alag) *

k 1
e, JAui8)=2c
£ g ° 5
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2 \ .

so that simplifying,
n
Pe +Rugia) =) T ((1-a(A;))alA ). (6.9
0 i=
Moreover, if y e A2 is arbitrary, then by adding and
subtracting q(Aj) from u(Aj) inside (6.1) and noting
the sum of cross terms is a sum of zero,

pe +Rosa) = op [(Rnsa) +2lRu-q) , (5.9)
where © 0 .
I d
aldp-a) € ¢ - ) ula)-a(A D% (6.10)
PO
Hence, if score function fo is used and prior

probability measure q:A - [0,1] is known, then a
natural way of evaluating any competing uncertainty
measure is to use 2{A,u-q), whose miaimum is of
course zero for p = "q = q.

On the other hind, if q is not known, one could
seek e.g., the ceast favordble prior q , i.e., that
q maximizing (6.2) in general, and for°f=f°, {6.8).

Thus, for f=f°. n=2, and A = (A1’A2) with, say,

d ] 1 1] )
A, 5 v A sy S, (601)
with all Y4 #0,0 ; so that
A]=Y] VY, s A2 =N vy, (6.12)

and
q(A;) = (v 1+aly,)5 alA,)=q(y,)*q(y,).(6.13)

Thus, (6.13) shows (6.8) becomes

= co-((l-q(A]))q(A]) + (1-q(A2))q(A2))

c°°<?(1-Y4)Y1 t-vghyg ¥ (1-Y2)Y2)-
(6.14)

. (A sq)
f0 q

Then, by use of Lagrange multipliers, or by inspect-
ion of (6.14), it follows that the least favorable
9% here is given as

qo(Y2)=qo(Y3)=x ; qo(71)=qo(74)=(1/2)-x; (6.15)

for any 0 s x < 1/2 . This, by (v.13), is equival-
ent to

o (A} = qo(AZ) =12, (6.15)

which is intuitively one would expect.

Another important concept is:for a given uncertainty
W € A, when prior q is not at all known, determine
the bgst and worst expected losses for all possible
prior q. In light of (6.9),(6.10), a reascnable
approximation or replacement to this is to consider
KRw) & int (alRueq) ).
over all
prior q

(6.16)

Thus, e.g., if A is an actual disjoint exhaustive
partitioning of nonvacuous sets wrt Q (so that one
can et without loss of generality Aj = Yj) and if

n -

.Z]u(Aj) s 1, then it is eas: "5 show K{A,u) occurs
J:
uniquely for 9=q,» where , for j=1,..,n ,

= { e
q,(A;) = u(&;) + (/m) Q1 k§1"(Ak)) ,  (6.a7)
with corresponding value n
K(Ap) = (1/n)(1- zlu(;\k))2 , (6.18)
k=

which obviously approaches zero as n approaches 4=,
Hence, relative to the criterion in (6.16), all p

€ A2 for the above assumptions behave asymptotically
as © if they were the optimal solution q.

Consider again Theoxem 5.4(ii) with @ finite and
as above A, = [0,1]%, A=P(Q). Then, compatible with
the last rémark following the theorem, it is clear
by a continuity argument, there is a unique r=r ,
for each given u:Q + [0,1],such that H

Tone)" =1, (6.19)
wEQ

Hence, by Theorem 5.3(ii), one can choose g()={)",
and in turn determine archimedean t-conorm T_ (see

(5.22)} which makes the extension np tA o]
A”-admissible wrt game Gf vk, and 'r
r
Pe () =g()= (). (6.26)
r

It is also easily verified that one can choose for
r’ fr(t,0)=tr+1 ;£ (1) = £ ¥ (et + rj(6.20)
for all te[0,1].

Finally, note , using steps 1-8 in section 1 the
Jjoint perfosmance sengitivity tradeoff forms:

OVERALL €3 @ LOSS(C3)=LaelfoAVo(y) (6.22
YSLocAL DFL LOSS: os Jlomia) f .
1
where peA, is identified with (P Jeob, 1vl).

This paper has been written to demonstrate-the po-
tential use of the extended Definetti-Lindley Un-
certainty Measure Game in comparing and contrasting
various uncertainty measures, including probability
and fuzzy sets/possibility. Since the data fusion
aspect is ceptral to all data fusion, choices of
Algetraic Logic Description Pairs can play a key
role in evaluations. Synthesizing the two by use
of the sequence of computations leading to the

€2 Design Game appears to be a .2asonable path to
take. Thus, one combines the 1nss function for

the DFL game as a function of the candidate uncert-
ainty measure (compared to the optimal bayes, e.g.-
which will always ge a function of probability)
with the overall C° evaluation function. Sensitiv-
ity to parameter changes can be obtained through
the standard use of matrix differentiation as a
cnained multiplicative function, Of course, be-
cause of the great number of inputs - even in the
very simplified model proposed here - computation
difficulties arise immediately. On the other hand
efficient pruning techniques and judicious use of
variable relations can reduce computations.
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